Tradicionalmente la propensión a la compra a determinados productos / servicios, ofertas y/o promociones de nuestros clientes actuales o potenciales se puede determinar a través del desarrollo de modelos de conocimiento de clientes o Customer Intelligence.
La complejidad de estos modelos depende de diferentes factores, tales como la información disponible, las capacidades analítico– técnicas, el talento humano e incluso la propia cultura de la organización, entre otros.
Pero, ¿cuáles son los modelos de conocimiento de clientes que nos ayudan a incrementar las ventas y cómo podemos aplicarlos?
Básicamente, a través de estos modelos podemos obtener:
- La probabilidad o score de compra asignada a cada cliente: permite ordenar / priorizar el público objetivo de mayor a menor probabilidad de compra. Se trata de un modelo que predice QUIÉNES SON las personas o empresas más adecuadas para ser incluidas en el target de nuestra acción comercial.
- El perfil del segmento al cual pertenece cada cliente según sus características: permite describir CÓMO SON, en base a una serie de variables disponibles, los clientes que mejor encajan con un determinado producto / servicio y facilita, a su vez, la definición de los aspectos más tácticos de la acción comercial (comunicación, canal, …). Por lo tanto, podemos también seleccionar las personas o empresas que cumplen una serie de condiciones aplicables a las variables internas disponibles (deben ser conocidas para poder ser aplicable a toda nuestra cartera de clientes). En el caso de personas: edad, antigüedad, género, número de hijos, tenencia y/o uso de productos/servicios, nivel de renta, etc. ; para el caso de empresas: sector de actividad, facturación, número de empleados, número de sedes, etc.
Aunque lo ideal es contar con ambos “grados” de conocimiento, probabilidad de compra (quiénes son) y perfil del segmento (cómo son), pueden desarrollarse y utilizarse de forma independiente.
En general, el desarrollo de Customer Intelligence conlleva el uso de técnicas y metodologías propias de la estadística avanzada y minería de datos (datamining) y requiere de una gestión a nivel de proyecto cuya duración no suele ser inferior a los 2-3 meses.
Una vez desarrollados los modelos, su explotación técnico-analítica consiste en la ejecución periódica (según la naturaleza y necesidad del propio modelo) de los algoritmos de cálculo que determinan la probabilidad o el perfil a nivel individual de cada cliente. Así mismo, también periódicamente (anualmente, p.e.) la Customer Intelligence debe ser ajustada («reentrenaminetos») en base a los resultados obtenidos en su utilización en las acciones comerciales o, simplemente, debido a las situaciones cambiantes propias de cualquier empresa y/o mercado.
Todo ello, el desarrollo inicial y su explotación técnico-analítica y ajustes periódicos, se realizan dentro de un entorno analítico de datos integrados con foco en el cliente denominado “CRM analítico” o “Datamart de Marketing”. La disponibilidad y construcción correcta de dicho entorno es fundamental para poder desarrollar Customer Intelligence.
Bajo este enfoque, la función de Customer Intelligence asume el desarrollo, mantenimiento y explotación técnico-analítica de los modelos y, gracias a la misma, la función de Marketing de Producto / Clientes dispone de un conocimiento añadido que le permite una mayor precisión en el diseño de la oferta y en la planificación y ejecución de las acciones comerciales, tanto para la nueva captación de clientes sobre el mercado potencial como para el desarrollo – cross-selling – y la fidelización de los clientes de su cartera actual.
La explotación comercial consiste en el diseño y puesta en marcha de campañas que se concretarán en la ejecución de determinadas acciones comerciales que podemos clasificar en salientes o entrantes.
- En una acción saliente o pull, dada una oferta y el segmento de clientes que mejor se adecua a la misma (clientes con mayor propensión a la compra), la comunicación con el cliente se produce a instancias de la empresa: telemarketing, e-mailing, sms, correo postal, …
- Por el contrario, en una acción entrante o push, la empresa aprovecha la interacción con el cliente que él mismo ha originado (llamada entrante, navegación por la web, visita a un punto de venta presencial, …). En estas situaciones el canal (Call Center, web e-commerce, tienda, …) debe disponer, a través de la ficha 360º del cliente –the 360º customer view-, de la información de propensión de compra (previamente calculada) y/o su perfil de segmento (también previamente calculado) que el asesor comercial (físico o virtual) utiliza para ofrecer/presentar la oferta más adecuada.
Cómo mejorar la gestión operativa de las acciones comerciales y en qué situaciones se hace imprescindible la utilización de un sistema de gestión de campañas será motivo de una próxima entrada.
Related Posts
- Workshop: el antídoto contra la “reunionitis” - 20 julio, 2020
- Los clientes también se fugan - 21 junio, 2020
- Cultura de Innovación - 25 mayo, 2020
2 comentarios sobre “Customer Intelligence aplicada a la venta”