Inbound Marketing e inteligencia en tiempo real

Inbound Marketing y la inteligencia en tiempo real

El Inbound Marketing está siendo uno de los “beneficiarios” directos de la corriente (¿imparable?) del Big Data. Ello es debido a que, desde un punto de vista de negocio, los dos aspectos fundamentales que acompañan el concepto de Big Data tienen que ver con:

  1. Lo digital está provocando la aparición de nuevos flujos y conjuntos de datos inexistentes o de imposible / difícil acceso hasta la fecha.
    • La pregunta importante es “¿QUÉ -NUEVOS- DATOS son relevantes para mi negocio?”.
  2. Estos nuevos flujos y conjuntos de datos podemos utilizarlos, potencialmente, para tomar más y mejores decisiones en tiempo real.
    • En este caso la pregunta, relacionada directamente con la anterior, es “¿QUÉ DECISIONES EN TIEMPO REAL aportan valor?”.

Y justamente sobre estos dos aspectos, los datos y su uso para la toma de decisiones en tiempo real en el contexto del Inbound Marketing, que me gustaría aportar una serie de “noticias” y reflexiones.

Las noticias

Tomar las mejores decisiones mientras la interacción originada por el propio cliente está ocurriendo, sea por el canal que sea, puede aportar importantísimos beneficios originados por ventas adicionales (cross-selling) o por una mayor satisfacción y lealtad futura de los clientes (fidelización y retención). Algunos datos conocidos (incluidos en un artículo recientemente publicado en La Vanguardia “El tesoro de los datos masivos“) así lo confirman:

  • “En Amazon, pionera en la industria del comercio electrónico, la tercera parte de las ventas son resultado de su sistema de recomendación y personalización, que se nutre de las rutinas de navegación y compra de sus usuarios.”
  • “En Netflix, el videoclub on line más popular, las tres cuartas partes de los pedidos surgen también de las recomendaciones.”

Ya hace algunos años (todavía no se hablaba de Big Data) que han aparecido en el mercado soluciones software de CRM que incorporan,  dentro de su módulo de gestión de campañas de marketing, una serie de funcionalidades que permiten el cálculo en tiempo real de la propuesta óptima para el cliente o,  lo que también denominan,  Best Next Action (Best Next Offer, Best Next Activity o Best Next Sell).

En síntesis, se trata de tener un asistente virtual que, en tiempo real, ayuda al canal de venta o de atención al cliente (Contact Center, puntos de venta, la web, …) a predecir las preferencias y comportamientos futuros (inmediatos) de los clientes. Y dicha predicción se convierte en una recomendación de próxima acción a sugerir o presentar al cliente en ese mismo instante.

Algunas de estas soluciones de CRM serían IBM Unica Interact e Infor Epiphany Interaction Advisor.

Pero, ¿en base a qué datos actúan en tiempo real los “generadores inteligentes” de propuestas óptimas?:

  1. La información preexistente del cliente en el Datamart de Marketing: variables existentes más o menos “estáticas” que caracterizan al cliente o indicadores pre-calculados a través de Customer Intelligence que determinan el perfil del cliente, la propensión de compra a un determinado producto / servicio o la propensión al abandono del cliente.
  2. La información de contexto de la interacción con el cliente: motivo de la interacción (llamada, …) , información tomada durante la interacción (preguntas y respuestas obtenidas), navegación seguida por la web, últimos comentarios en las redes sociales, …
  3. La información generada por la propia herramienta de recomendaciones a través de algoritmos propios de auto-aprendizaje. Las propuestas ofrecidas por la herramienta van generando y registrando una serie de resultados, algunos positivos (el cliente acepta la propuesta presentada) y otros negativos (el cliente no acepta). Cuando se produce una nueva interacción con un nuevo cliente se evalúan en tiempo real los resultados acumulados hasta ese mismo instante y se genera la mejor propuesta (y probablemente nueva) a presentar a ese nuevo cliente.

Las reflexiones

Respecto los datos necesarios

Si nos centramos en los datos necesarios por parte de estas herramientas, deberíamos hacernos, como mínimo, las siguientes preguntas:

  • ¿Qué variables son las relevantes para caracterizar los clientes, determinar el perfil y su propensión de compra? ¿Dispones de ellas en el Datamart de Marketing?
  • ¿Qué información de contexto de las interacciones de tus clientes con tu empresa puede ser relevante para incidir en su comportamiento inmediato ? ¿Es la misma para cada canal? ¿Puedes registarla y/o obtenerla?

Si no sabemos qué datos son los relevantes y/o no disponemos de ellos, de momento, olvídate de la inteligencia en tiempo real. Primero, enfoca tus esfuerzos en definir y construir tu Datamart de Marketing (entorno integrado de datos con foco el cliente).

Respecto el “tiempo real”

Superada la etapa anterior (ya tienes el Datamart de Marketing), parece lógico pensar que la necesidad de decidir y actuar en tiempo real puede ser imprescindible si se dan alguna o varias de las siguientes condiciones:

  • El portafolio de productos / servicios que permite configurar las distintas propuestas a clientes es muy amplio y cambia muy a menudo.
  • Los valores de las variables relevantes que determinan la propensión de compra a los diferentes productos / servicios de los clientes también varían a menudo.
  • La información del contexto de la interacción (motivo inicial de la interacción, navegación en la web, …) incide significativamente en la recomendación al cliente. 

Si esto, en gran medida, es así, tiene sentido aplicar inteligencia en tiempo real. En caso contrario, olvídate de ello.

Por último, también parece obvio pensar que no es necesaria ninguna inteligencia (ni datos) en tiempo real si existen decisiones estratégicas que determinan, por encima de cualquier otro criterio, qué hay que vender y cuándo. Si este tu caso, olvida esta entrada. Tu empresa todavía no sabe/quiere hacer Inbound Marketing.

Share Button

4 pensamientos sobre “Inbound Marketing y la inteligencia en tiempo real”

  1. Excelente artículo; por fin alguien que habla claro de qué es realmente la inteligencia de datos, y lo que es más importante, cómo llevarla a cabo. Mil gracias.

Deja un comentario

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *